Protein Intake for Strength Training


Protein Intake for Strength Training

An undeniable fact about strength training is that your muscles need protein to repair themselves and grow. It doesn’t matter whether you’re currently cutting weight, trying to bulk up, or cruising in maintenance mode; you’re still going to need adequate protein intake.

But just how much protein intake for strength training do you really need?

It seems like everywhere you turn for advice, you’ll get a different answer. So in order to simplify things for you, we’ve created this quick one-stop reference guide that you can consult to find out exactly how many grams of protein you should be aiming for on a daily basis.

The Importance of Protein

Most people think of muscle growth and repair when they think of protein. The truth is that protein is important for every single cell in your body. Not only does it help to build and repair muscle tissue, it also helps your body to make the hormones and enzymes it requires to function properly.

Unlike fats and carbohydrates, your body doesn’t store protein to draw from when it needs a new supply. What this means for strength training is that you need to be vigilant in ensuring that each and every day you are consuming enough protein to help you achieve your fitness goals.

Nutrient Timing

When involved with strength training, it’s particularly important to pay attention to your nutrient timing — especially when it comes to protein. Your biggest, and most protein-dense meal, should be consumed within a few hours of your workout.

With that being said, it’s a good idea to take some form of protein immediately post-workout, usually in the form of a protein drink. There are a couple of key reasons for this.

The first is that since muscle protein synthesis is already elevated from your workout, when combined with the consumption of amino acids found in protein, you’ll be able to encourage more muscle growth.

The second reason is to purposely spike your insulin levels in order to send the amino acids and glucose into your muscle tissue. Insulin will also help to prevent further muscle tissue breakdown and reduce exercise-induced stress. (1)

Aside from these two meals, the remainder of your meals should be spread evenly throughout the day when following a strength training program.

Calculate Your Protein Intake Based On Goals

Before we can dive into the nitty-gritty and provide exact recommendations concerning protein intake, you’re going to have to first figure out exactly what your strength training goals are.

I would imagine that the majority of our readers are currently either bulking up to gain mass or trying to cut weight to shed some fat. If you’re already completely satisfied with your physique and just going off maintenance — then you probably don’t need this guide to begin with!

Going with the base assumption that you’re either bulking or cutting, you’re obviously going to have different caloric requirements. From personal experience, I’d recommend sticking with either a caloric deficit or surplus of between 300-500 calories depending on your goals and/or your training intensity and frequency.

How Much You Need 

When it comes to strength training, a good general rule of thumb to follow for protein intake is for men to aim for 2g/kg while women should go for 1.2g/kg of body weight. For very intense strength training (e.g., on the Olympic level), it is recommended that you increase your protein intake to ~4g/kg of body weight.

If you are also trying to build mass and bulk, in addition to strength, one important thing to keep in mind is that it isn’t just about protein intake — you need to cover all of your macronutrient bases as well…

If you’re trying to gain weight, you’re going to need both protein and carbs to grow. A minimum of 40% of your total caloric intake should be coming from quality carb sources. (2) For your remaining macro split, I would recommend focusing on 25% coming from lean protein sources and the remaining 15% coming from a mixture of high-quality fats.

When it comes to cutting weight, it’s generally a good idea to lower the amount of carbs that you’re consuming while increasing the amount of protein and fat. In that case, I would recommend going with 40% of your daily calories as protein, with another 40% from quality fats, and the remaining 20% as carbs.

Guide to Protein Sources

The type of protein that you’re consuming definitely matters. That’s true even beyond avoiding the obvious unhealthy sources of protein like processed meats. Let’s take a quick look at some common protein sources to compare them.

Animal vs. Plant Protein

I generally prefer to opt for animal sources of protein over plant-based sources. The reason being is that plant proteins are considered to be ‘incomplete’, as they lack the amino acids that help to optimize muscle protein synthesis. There’s also the fact that soy protein can actually hinder your strength training goals, as it can actually lower testosterone and decrease muscle strength (due to its estrogenic nature).

Whey Protein

In general, liquid proteins are a better option than solid ones due to the fact they absorb quicker. Among liquid protein options, I would recommend either whey isolate or whey concentrate. The reason being is that whey contains branched-chain amino acids (BCAAs) that make sure your insulin is maximally stimulated. There are also many other great health benefits to be gained from using whey, making it an ideal choice.

Bioavailability Index

Another reason why I prefer whey protein is because it ranks the highest on the bioavailability index. This ranks the amount of protein absorbed that can actually be used by your system. Whey isolate and whey concentrate each have a score over 100, while plant-based options all rank under 75. (3)


If you’re going to be participating in any kind of serious strength training program, then it’s essential that you provide your body with an adequate amount of protein to help your muscles recover and grow. However, it’s equally important to pay attention to your other macros as well! Don’t neglect your carbs and healthy fats either — success in the gym comes from both a well-structured routine and a well-balanced diet plan. However, also remember that individualization is key. Certain populations do better strength training and gaining mass when on a lower carb protocol (e.g. insulin resistant individuals).

If you aren’t experiencing the gains you desire, try altering your protein/carb ratio.



Still curious? Want to learn more about health and nutrition?

Go VIP (it’s free!) and receive exclusive content from the HealthSnap team about nutrition and health & fitness in general.

Debunking Fat & Cholesterol Myths


For decades, fat and cholesterol have been demonized as culprits for cardiovascular disease and obesity albeit for no good reason as there is no good scientific evidence to support these claims. Only recently has the mainstream science and nutrition community started to recognize that fat isn’t the issue. Instead, as researchers are finding, an increased risk of cardiovascular disease and obesity is more closely linked to the consumption of processed foods, higher intake of carbohydrates, as well as poor lifestyle choices. Let’s take a closer look!

Fat & Cholesterol – What Are They Exactly?

When talking about fat and cholesterol, we tend to lump the two together and think of them interchangeably. However, fat and cholesterol are very different. Fat is a macronutrient. Macronutrients are the nutrients we need in high amounts in our diets. They provide energy, often displayed in the form of “calories” on food labels. Fats are hydrocarbons, meaning they contain hydrogen and carbon components. The hydrocarbon chains that fats are comprised of determine their function and help differentiate between the supposed “good” and “bad” kinds of fats, unsaturated and saturated fat, respectively. The difference between saturated and unsaturated fats has to do with the difference in saturation of hydrogen atoms. Unsaturated fats contain a double bond, meaning they have fewer hydrogen atoms attached to the carbon atoms.1 Saturated fats contain no double bonds.

Cholesterol, on the other hand, is an organic sterol, which is a waxy, lipid substance. 25% comes from our diet, and the liver makes the other 75%.2 Cholesterol, unlike fat, does not provide energy to the body. There are two types of cholesterol, LDL, and HDL. LDL, or low-density lipoproteins, are often referred to as the “bad” cholesterol. HDL, or high-density lipoproteins, is considered to be the “good” cholesterol. HDL is considered “good” because it helps clear excess LDL from the bloodstream, sending it back to the liver to be broken down and excreted. As a side note, it is important to understand that LDL and HDL are not actually “cholesterol”. They are the proteins in the body that carry around cholesterol.

Despite the common belief that we should eliminate fat and cholesterol from our diets, we need to consume these in our diets for regular functioning and body processes. Fats protect your organs, provide energy, aid in hormone production, and help in the absorption of fat-soluble vitamins, such as vitamin A and K. Cholesterol is responsible for the production of sex hormones, building certain tissues throughout the body, and helping in the production of bile in the liver.3 It is also necessary for vitamin synthesis, cellular integrity and hormone synthesis. In fact, certain diseases, such as Smith-Lemli-Opitz Syndrome, where cholesterol cannot be synthesized properly leads to serious issues such as autism and reduced muscle.

Dietary Saturated Fat – Why the bad rap?

In the 20th century, heart disease became an epidemic amongst the American population. Statistics showed that it was the number 1 cause of death. Researchers made a correlation between the high consumption of saturated fat and heart disease because saturated fats were found, in the short-term, to be associated with increased total cholesterol. The problem(s)? There was no solid scientific evidence to back up these claims. The studies and evidence presented were based on animal trials and general assumptions. Experiments were never well controlled in these studies, and researchers never accounted for confounding factors. There was also no evidence from human studies to back up this saturated fat/heart disease hypothesis.

More specifically, researchers also failed to recognize that total “cholesterol” is a flawed marker of heart disease, because total cholesterol includes both “bad” LDL cholesterol, and “good” HDL cholesterol.

What researchers actually found is that, in the short term, saturated fat increases both HDL and LDL cholesterol, and HDL is associated with a lower risk of heart disease.

In reality, there is no such thing as “good” or “bad” cholesterol. You need both HDL and LDL for proper physiological function (LDL is good, and actually helps bring cholesterol into the cells and helps to maintain cellular fluidity). The only time cholesterol is “bad” is when it ends up in the wrong places. Under the influence of inflammation and other factors, this can result in plaque buildup in arterial walls, causing blockages and wreaking havoc on the cardiovascular system. More importantly, it turns out that the type of cholesterol that increases the risk of developing arterial plaques is small sized, dense, LDL particles, in high numbers. The reason for this is that smaller sized LDL particles have a higher chance of being absorbed in the arterial wall becoming oxidized, which is a critical step in the development of atherosclerosis. Larger LDL particles are less susceptible to arterial wall penetration and oxidation. Furthermore, the larger the number of these smaller particles, the higher the chances of these processes occurring.

Interestingly, researchers have found that in the short-term, saturated fat consumption actually helps convert small LDL particles to larger particles.4,5,6 Researchers have actually found that low-carb diets, high in saturated fats, can reduce the risk of heart disease significantly due to the favourable cholesterol profiles obtained following these diets; fewer numbers of small LDL particles, and higher numbers of large LDL and HDL particles.7,8 Low-fat diets do NOT reduce the amount of small LDL particles, and actually, have been shown to result in an unfavorable lipid profile (high small LDL, low HDL, and increase triglycerides).9,10 

There are a few large studies (systemic reviews and meta-analyses) that take an in-depth look into all of the data obtained to date on observational studies and controlled trials about saturated fat and heart disease. Here are there conclusions:

  1. A meta-analysis of prospective epidemiologic studies showed that there is no significant evidence for concluding that dietary saturated fat is associated with an increased risk of CHD or CVD. More data are needed to elucidate whether CVD risks are likely to be influenced by the specific nutrients used to replace saturated fat.11
  2. Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.12

Perhaps most importantly, a recent scientific study from 2017 explored macronutrients and their relationship to mortality and cardiovascular disease from 18 countries in 5 different continents. They concluded the following:

“High carbohydrate intake was associated with higher risk of total mortality, whereas total fat and individual types of fat were related to lower total mortality. Total fat and types of fat were not associated with cardiovascular disease, myocardial infarction, or cardiovascular disease mortality, whereas saturated fat had an inverse association with stroke. Global dietary guidelines should be reconsidered in light of these findings.”13

Dietary Cholesterol

We’ve already covered why cholesterol is good, and identified that the only time cholesterol is potentially “bad” is when you have an increased number of small-sized LDL particles. Even in these scenarios, this doesn’t mean you will get heart disease, but that you are increasing your risk of heart disease. In fact, cholesterol-lowering therapies do not lower risk of cardiovascular disease.14 Heart disease is a complex phenomenon, and researchers are finding out that it is driven by a variety of factors, including inflammatory and autoimmune factors, as well as genetic and epigenetic factors.

But what about the cholesterol in our diet? Does this impact our cholesterol levels?

It turns out that dietary cholesterol actually has no impact on our blood cholesterol levels. Only a small portion of the cholesterol from our diet actually gets absorbed into the body. Furthermore, when our bodies sense low levels of cholesterol, they ramp up cholesterol synthesis to make up for the lack of cholesterol. In fact, avoidance of dietary cholesterol can result in malnutrition, due to the reduced consumption of healthy foods that also happen to contain cholesterol, and even increased risk of heart attacks.15,16

The most important factors for achieving ffavourableblood cholesterol profiles appear to be of epigenetic origin, and include: 1) decreasing the amount of dietary carbohydrates, 2) elimintation of processed foods, 3) avoidance of inflammatory foods, 4) positive lifestyle choices (like increased exercise frequency).17,18,19,20

Genetics or hereditary factors also play a role in blood cholesterol profiles. The liver is a key player in cholesterol homeostasis and LDL and HDL production, and individuals with genetic conditions that affect the liver are more susceptible to cholesterol issues.21

The Bottom Line

Cholesterol and fat do a whole lot of good for our bodies. Without them, we would have many problems functioning properly. Don’t believe everything you read. Do your research and stay educated about what foods you are putting in your body!

Still curious? Want to learn more about health and nutrition?

Go VIP (it’s free!) and receive exclusive content from the HealthSnap team about nutrition and health & fitness in general.